jueves, 30 de octubre de 2014

Ley de Watt (potencia eléctrica)


¿Qué es la potencia eléctrica?


Ley de Watt (potencia eléctrica)


Concepto de energía

Para entender qué es la potencia eléctrica es necesario conocer primeramente el concepto de “energía”, que no es más que la capacidad que tiene un mecanismo o dispositivo eléctrico cualquiera para realizar un trabajo.
Cuando conectamos un equipo o consumidor eléctrico a un circuito alimentado por una fuente de fuerza electromotriz (F.E.M), como puede ser una batería, la energía eléctrica que suministra fluye por el conductor, permitiendo que, por ejemplo, una bombilla de alumbrado, transforme esa energía en luz y calor, o un motor pueda mover una maquinaria.
De acuerdo con la definición de la física, “la energía ni se crea ni se destruye, se transforma”. En el caso de la energía eléctrica esa transformación se manifiesta en la obtención de luz, calor, frío, movimiento (en un motor), o en otro trabajo útil que realice cualquier dispositivo conectado a un circuito eléctrico cerrado.
La energía utilizada para realizar un trabajo cualquiera, se mide en “joule” y se representa con la letra “J”.

Potencia Electrica

Potencia es la velocidad a la que se consume la energía. Si la energía fuese un líquido, la potencia sería los litros por segundo que vierte el depósito que lo contiene. La potencia se mide en joule por segundo (J/seg) y se representa con la letra “P”.
Un J/seg equivale a 1 watt (W), por tanto, cuando se consume 1 joule de potencia en un segundo, estamos gastando o consumiendo 1 watt de energía eléctrica.
La unidad de medida de la potencia eléctrica “P” es el “watt”, y se representa con la letra “W”.

Cálculo de potencia en una carga activa (resistiva)

La forma más simple de calcular la potencia que consume una carga activa o resistiva conectada a un circuito eléctrico es multiplicando el valor de la tensión en volt (V) aplicada por el valor de la intensidad (I) de la corriente que lo recorre, expresada en amper. Para realizar ese cálculo matemático se utiliza la siguiente fórmula:

(Fórmula 1)


Ley de Watt (potencia eléctrica)

El resultado de esa operación matemática para un circuito eléctrico monofásico de corriente directa o de corriente alterna estará dado en watt (W). Por tanto, si sustituimos la “P” que identifica la potencia por su equivalente, es decir, la “W” de watt, tenemos también que: P = W, por tanto,

Ley de Watt (potencia eléctrica)

Si ahora queremos hallar la intensidad de corriente ( I ) que fluye por un circuito conociendo la potencia en watt que posee el dispositivo que tiene conectado y la tensión o voltaje aplicada, podemos despejar la fórmula anterior de la siguiente forma y realizar la operación matemática correspondiente:

(Fórmula 2)


Ley de Watt (potencia eléctrica)

Si observamos la fórmula 1 expuesta al inicio, veremos que el voltaje y la intensidad de la corriente que fluye por un circuito eléctrico, son directamente proporcionales a la potencia, es decir, si uno de ellos aumenta o disminuye su valor, la potencia también aumenta o disminuye de forma proporcional. De ahí se deduce que, 1 watt (W) es igual a 1 ampere de corriente ( I ) que fluye por un circuito, multiplicado por 1 volt (V) de tensión o voltaje aplicado, tal como se representa a continuación.

1 watt = 1 volt · 1 ampere

Veamos, por ejemplo, cuál será la potencia o consumo en watt de una bombilla conectada a una red de energía eléctrica doméstica monofásica de 220 volt, si la corriente que circula por el circuito de la bombilla es de 0,45 ampere.
Sustituyendo los valores en la fórmula 1 tenemos:
P = V · I
P = 220 · 0,45
P = 100 watt
Es decir, la potencia de consumo de la bombilla será de 100 W .
De igual forma, si queremos hallar la intensidad de la corriente que fluye por la bombilla conociendo su potencia y la tensión o voltaje aplicada al circuito, podemos utilizar la fórmula 2, que vimos al principio. Si realizamos la operación utilizando los mismos datos del ejemplo anterior, tendremos:

Ley de Watt (potencia eléctrica)

De acuerdo con esta fórmula, mientras mayor sea la potencia de un dispositivo o equipo eléctrico conectado a un circuito consumiendo energía eléctrica, mayor será la intensidad de corriente que fluye por dicho circuito, siempre y cuando el valor del voltaje o tensión se mantenga constante.
La unidad de consumo de energía de un dispositivo eléctrico se mide en watt-hora (vatio-hora), o en kilowatt-hora (kW-h) para medir miles de watt.
Normalmente las empresas que suministran energía eléctrica a la industria y el hogar, en lugar de facturar el consumo en watt-hora, lo hacen en kilowatt-hora (kW-h). Si, por ejemplo, tenemos encendidas en nuestra casa dos lámparas de 500 watt durante una hora, el reloj registrador del consumo eléctrico registrará 1 kW-h consumido en ese período de tiempo, que se sumará a la cifra del consumo anterior.
Una bombilla de 40 W consume o gasta menos energía que otra de 100 W. Por eso, mientras más equipos conectemos a la red eléctrica, mayor será el consumo y más dinero habrá que abonar después a la empresa de servicios a la que contratamos la prestación del suministro de energía eléctrica.
Para hallar la potencia de consumo en watt de un dispositivo, también se pueden utilizar, indistintamente, una de las dos fórmulas que aparecen a continuación:

Ley de Watt (potencia eléctrica)


Ley de Watt (potencia eléctrica)

En el primer caso, el valor de la potencia se obtiene elevando al cuadrado el valor de la intensidad de corriente en ampere (A) que fluye por el circuito, multiplicando a continuación ese resultado por el valor de la resistencia en ohm (Ley de Watt (potencia eléctrica)) que posee la carga o consumidor conectado al propio circuito.
En el segundo caso obtenemos el mismo resultado elevando al cuadrado el valor del voltaje de la red eléctrica y dividiéndolo a continuación por el valor en ohm (Ley de Watt (potencia eléctrica)) que posee la resistencia de la carga conectada.

Ley de Watt (potencia eléctrica)


Placa colocada al costado de un motor monofásico de corriente alterna, donde aparece, entre otros< datos, su potencia en kilowatt (kW), o en C.V. (H.P.).

El consumo en watt (W) o kilowatt (kW) de cualquier carga, ya sea ésta una resistencia o un consumidor cualquiera de corriente conectado a un circuito eléctrico, como pudieran ser motores, calentadores, equipos de aire acondicionado, televisores u otro dispositivo similar, en la mayoría de los casos se puede conocer leyéndolo directamente en una placa metálica ubicada, generalmente, en la parte trasera de dichos equipos. En los motores esa placa se halla colocada en uno de sus costados y en el caso de las bombillas de alumbrado el dato viene impreso en el cristal o en su base.

Cálculo de la potencia de cargas reactivas (Inductivas)

Para calcular la potencia de algunos tipos de equipos que trabajan con corriente alterna, es necesario tener en cuenta también el valor del factor de potencia o coseno de “phi” (Cos Ley de Watt (potencia eléctrica) ) que poseen. En ese caso se encuentran los equipos que trabajan con carga reactiva o inductiva, es decir, consumidores de energía eléctrica que para funcionar utilizan una o más bobinas o enrollado de alambre de cobre, como ocurre, por ejemplo, con los motores.
Las resistencias puras, como la de las bombillas de alumbrado incandescente y halógena, y los calentadores eléctricos que emplean resistencia de alambre nicromo (NiCr), tienen carga activa o resistiva y su factor de potencia es igual a “1”, que es el valor considerado ideal para un circuito eléctrico; por tanto ese valor no se toma en cuenta a la hora de calcular la potencia de consumo de esos dispositivos. Sin embargo, las cargas reactivas o inductivas, como la que poseen los motores eléctricos, tienen un factor de potencia menor que “1” (generalmente su valor varía entre 0,85 y 0,98), por lo cual la eficiencia de trabajo del equipo en cuestión y de la red de suministro eléctrico varía cuando el factor se aleja mucho de la unidad, traduciéndose en un mayor gasto de energía y en un mayor desembolso económico.
No obstante, tanto las industrias que tiene muchos motores eléctricos de corriente alterna trabajando, así como las centrales eléctricas, tratan siempre que el valor del factor de potencia, llamado también coseno de “fi” (Cos Ley de Watt (potencia eléctrica) ), se acerque lo más posible a la unidad en los equipos que consumen carga eléctrica reactiva. 
Normalmente el valor correspondiente al factor de potencia viene señalado en una placa metálica junto con otras características del equipo. En los motores eléctricos esa placa se encuentra situada generalmente en uno de los costados, donde aparecen también otros datos de importancia, como el consumo eléctrico en watt (W), voltaje de trabajo en volt (V), frecuencia de la corriente en hertz (Hz), amperaje de trabajo en ampere (A), si es monofásico o trifásico y las revoluciones por minuto (rpm o min-1) que desarrolla.
La fórmula para hallar la potencia de los equipos que trabajan con corriente alterna monofásica, teniendo en cuenta su factor de potencia o Cos Ley de Watt (potencia eléctrica) es la siguiente: 

Ley de Watt (potencia eléctrica)

De donde:
P .- Potencia en watt (W)
V .- Voltaje o tensión aplicado en volt (V)
I .- Valor de la corriente en amper (A)
Cos Ley de Watt (potencia eléctrica) .- Coseno de "fi" (phi) o factor de potencia (menor que "1" )
Si queremos conocer la potencia que desarrolla un motor eléctrico monofásico, cuyo consumo de corriente es de 10,4 amper (A), posee un factor de potencia o Cos = 0,96 y está conectado a una red eléctrica de corriente alterna también monofásica, de 220 volt (V), sustituyendo estos valores en la fórmula anterior tendremos:

P = 220 • 10,4 • 0,96 = 2196,48 watt

Como vemos, la potencia de ese motor eléctrico será de 
2196,48 watt. Si convertimos a continuación los watt obtenidos como resultado en kilowatt dividiendo esa cifra entre 1 000, tendremos: 2196,48 ÷ 1000 = 2,2 kW aproximadamente.

Múltiplos y submúltiplos de la potencia en watt


Múltiplos

kilowatt (kW) = 103 watt = 1 000 watt
kilowatt-hora (kW-h) – Trabajo realizado por mil watt de potencia en una hora. Un kW-h es igual a 1 000 watt x 3 600 segundos, o sea, 3 600 000 joule (J).

Submúltiplos

miliwatt (mW) = 10-3 watt = 0,001 watt
microwatt (W) = 10-6 watt = 0,000 001 watt

Caballo de fuerza (HP) o caballo de Vapor (C.V.)

Los países anglosajones utilizan como unidad de medida de la potencia el caballo de vapor (C.V.) o Horse Power (H.P.) (caballo de fuerza).
1 H.P. (o C.V.) = 736 watt = 0,736 kW
1 kW = 1 / 0,736 H.P. = 1,36 H.P.

EJERCICIOS

Determinemos la Potencia Eléctrica existente en una plancha eléctrica que tiene una resistencia de 10 Ohms, y es alimentada por una fuente de voltaje de 220 Volts.


Una cocina eléctrica tiene una resistencia de 8 Ohms y pasa una corriente por él de 12 Amp. ¿Cuál es el valor de Voltaje que lo alimenta?



Determinar la Corriente y la resistencia eléctrica de una waflera de 1.200 Watts conectada a una fuente de 220 voltios



Lámparas Fluorescentes

Teoría de Funcionamiento
La luminaria fluorescente, también denominada tubo fluorescente, es una luminaria que cuenta con una lámpara de vapor de mercurio a baja presión y que es utilizada normalmente para la iluminación doméstica e industrial. Su gran ventaja frente a otro tipo de lámparas, como las incandescentes, es su eficiencia energética.
Está formada por un tubo o bulbo fino de vidrio revestido interiormente con diversas sustancias químicas compuestas llamadas fósforos, aunque generalmente no contienen el elemento químico fósforo y no deben confundirse con él. Esos compuestos químicos emiten luz visible al recibir una radiación ultravioleta. El tubo contiene además una pequeña cantidad de vapor de mercurio y un gas inerte, habitualmente argón o neón, a una presión más baja que la presión atmosférica. En cada extremo del tubo se encuentra un filamento hecho de tungsteno, que al calentarse al rojo contribuye a la ionización de los gases.

Los elementos fundamentales son: el cebador (también llamado arrancador o partidor), los filamentos de tungsteno y el balasto, que provee reactancia inductiva. En algunos países que hablan español se emplean aún sus sinónimos ingleses starter y ballast.

·     El cebador, partidor o arrancador está formado por una pequeña ampolla de cristal que contiene gases a baja presión (neón, argón y gas de mercurio) y en cuyo interior se halla un contacto formado por una lámina bimetálica doblada en "U". En paralelo con este contacto hay un condensador destinado al doble efecto de actuar de amortiguador de chispa o apaga-chispas, y de absorber la radiación de radiofrecuencias que pudiesen interferir con receptores de radio, TV o comunicaciones. La presencia de este condensador no es imprescindible para el funcionamiento del tubo fluorescente, pero ayuda bastante a aumentar la vida útil del contacto del par bimetálico cuando es sometido a trabajar con altas corrientes y altas tensiones. Tanto el cebador como la luminaria acortan su vida útil cuantas más veces se la enciende, por esta razón se recomienda usar la iluminación fluorescente en regímenes continuos y no como iluminación intermitente.

·     El elemento que provee reactancia inductiva se llama balasto o balastro, aunque en algunos países se lo denomina incorrectamente reactancia, que en realidad es el nombre de la magnitud eléctrica que provee, no del elemento. Técnicamente es un reactor que está constituido por una bobina de alambre de cobre esmaltado, enrollada sobre un núcleo de chapas de hierro. El término balasto no debe ser confundido con su homónimo, el material usado en la construcción de vías de ferrocarril.

·     Los electrodos de cada terminal en una lámpara fluorescente están generalmente realizados con doble o triple filamento en tungsteno. Este filamento está revestido en un material emisor (Bario, estroncio, y óxido de calcio), que desprende electrones cuando se calienta a una temperatura de operación aproximada de 950º Celsius. A esa temperatura los electrones son emitidos libremente con solo una pequeña caída de potencia en cada electrodo. Este proceso es denominado emisión termoiónica, porque el calor es el principal responsable para la emisión de electrones.


Al aplicar la tensión de alimentación, los gases contenidos en la ampolla del cebador se ionizan, con lo que aumenta su temperatura lo suficiente para que la lámina bimetálica se deforme, haga contacto cerrando el circuito, lo que hará que los filamentos de los extremos del tubo se calienten al rojo vivo, y esto comienza la ionización de los gases en la vecindad de los filamentos. Al cerrarse el contacto el cebador se apaga y sus gases vuelven a enfriarse, por lo que un par de segundos después el contacto se abre nuevamente. Esta apertura trae como consecuencia que el campo magnético creado en la reactancia inductiva se "desmorone" o desaparezca bruscamente, lo que trae como consecuencia, de acuerdo con la ley de inducción de Faraday, la generación de un pico de alta tensión (autoinducción) que termina de ionizar los gases, se forma plasma conductor dentro de todo el tubo fluorescente y por lo tanto lo atraviesa una corriente de electrones que irá a interactuar con los átomos de Hg, Ar y Ne, los que entonces emitirán luz, principalmente en la región del ultravioleta (UV). El voltaje aplicado a los filamentos y al tubo es pulsante, porque la energía eléctrica que alimenta el circuito es de corriente alterna de 50 Hz (como en Europa) o de 60 Hz (por ejemplo en USA y Japón). Los filamentos tienen inercia térmica, pero el plasma no, lo que produce un veloz parpadeo en la luz emitida, que puede molestar a algunas personas, producir dolor de cabeza y hasta convulsiones a quienes sufren de epilepsia. Este fenómeno se minimiza al disponer los tubos en grupos, alimentados cada tubo desde fases distintas y con rejillas de dispersión estroboscópica.
Los filamentos, al calentarse, desprenden electrones que, junto con el pico de autoinducción, ionizan los gases que llenan el tubo; se forma así un plasma que conduce la electricidad. Este plasma excita los átomos del vapor de mercurio que, como consecuencia, emiten luz visible y ultravioleta.
El revestimiento interior de la lámpara tiene la función de filtrar y convertir la luz ultravioleta en visible. La coloración de la luz emitida por la lámpara depende del material de ese recubrimiento interno. El material del tubo, vidrio común, contribuye a reducir la luz UV que pudiera escapar fuera de la luminaria.


Las lámparas fluorescentes son dispositivos con pendiente negativa de su resistencia eléctrica, respecto de la tensión eléctrica. Esto significa que cuanto mayor sea la corriente que las atraviesa, mayor es el grado de ionización del gas y, por tanto, menor la resistencia que opone al paso de dicha corriente. Así, si se conecta directamente la lámpara a una fuente de tensión prácticamente constante, como la suministrada por la red eléctrica, la intensidad tenderá a valores muy elevados, y la lámpara se destruirá en pocos segundos. Para evitar esto, siempre se la conecta a través de un elemento limitador de corriente para mantenerla dentro de sus límites de trabajo. Este elemento limitador, es el balasto que provee reactancia inductiva, la que absorberá la diferencia entre la tensión de alimentación y la tensión de trabajo del tubo.
Finalmente, la disminución de la resistencia interna del tubo una vez encendido, hace que la tensión entre los terminales del cebador sea insuficiente para ionizar el gas contenido en su ampolla y por tanto el contacto bimetálico queda inactivo cuando el tubo está encendido.

Todos los balastos magnéticos producen sonidos propios denominados zumbidos. Este varía desde un valor inaudible hasta un sonido notable. Los fabricantes de estos aparatos generalmente los designan con letras de la A hasta la F. El designado por las letras A tiene el menor zumbido y es usado en áreas no ruidosas; los designados con la letra F es de mayor zumbido y puede ser usado satisfactoriamente en alumbrados o en áreas industriales ruidosas. Existe también un tipo de balasto denominado de clase P que tiene incorporado un protector térmico, consiste en un termostato que desconecta al balasto del circuito cuando su carcaza adopta una temperatura que supera la de su normal funcionamiento.

Existe un tipo de balasto magnetico que es de arranque rapido:

También existe actualmente otro tipo de balasto o reactor, el balasto electrónico, que consta de un circuito electrónico y una pequeña bobina con núcleo de ferrite. Este balasto, a diferencia del balasto inductivo, se conecta al fluorescente sin cebador y logra arranques instantáneos de la lámpara y sin parpadeos, o en otros modelos, arranques de una manera más suave. En realidad, no se trata de un reactor en el sentido estricto del término, sino de un circuito electrónico con semiconductores que genera a) dos bajas tensiones para encender los filamentos de los extremos, y b) una alta tensión de alta frecuencia (decenas de kHz) aplicada entre los extremos. Ambos procesos suman sus efectos para ionizar los gases y así producir el plasma conductor que generará la radiación UV. Como regla general, los tubos que emplean el balasto electrónico tienen un rendimiento lumínico notablemente superior, y una vida media mucho más larga que los que usan el inductivo.
Sus conexiones son muy sencillas:
·         El cable de fase y el neutro se conectan ambos directamente a las dos entradas del balasto.
·         En este balasto hay dos pares de salidas, y cada par debe conectarse a cada filamento de la lámpara.




Propiedades
Las lámparas fluorescentes tienen un rendimiento luminoso que puede estimarse entre 50 y 90 lúmenes por vatio (lm/W).
Una cuestión curiosa es que la luminosidad de la lámpara depende no solamente del revestimiento luminescente, sino de la superficie emisora, de modo que al variar la potencia varía el tamaño, por ejemplo, la de 20 W mide unos 60 cm, la de 40 W, 1,20 m y la de 60 W 1,50 m (realmente serían de 18, 36 y 58 W respectivamente).
Su vida útil es también mucho mayor que la de las lámparas de incandescencia, pudiendo variar con facilidad entre 5000 h y más de 15000 h (entre 5 y 15 veces más), lo que depende de diversos factores, tales como el tipo de lámpara fluorescente o el equipo complementario que se utilice con ella.
Hay en el mercado distintos modelos con diferentes temperaturas de color. Su temperatura de color está comprendida generalmente entre los 3000 K y los 6500 K (del Blanco Cálido a Luz Día Frío). Sin embargo, en la actualidad se pueden conseguir tubos con una amplia gama de temperatura de color, lo que permite encontrar con relativa facilidad modelos que van desde los 2700 K hasta los 8000 K.
Su índice de rendimiento de color habitualmente va de 62 a 93, siendo el valor de 100 la representación correcta de colores en los objetos iluminados y 70 un valor considerado aceptable.

Desventajas
Las lámparas fluorescentes no dan una luz continua, sino que muestran un parpadeo que depende de la frecuencia de la corriente eléctrica aplicada (por ejemplo: en España, 50 Hz para corriente alterna). Esto no se nota mucho a simple vista, pero una exposición continua a esta luz puede dar dolor de cabeza. El efecto es el mismo que si se configura una pantalla de ordenador a 50 Hz.
Este parpadeo puede causar el efecto estroboscópico, de forma que un objeto que gire a cierta velocidad podría verse estático bajo una luz fluorescente. Por tanto, en algunos lugares (como talleres con maquinaria) podría no ser recomendable esta luz.
El fickering o parpadeo, aunque imperceptible, afecta severamente la salud de algunas personas con algunos tipos migrañas, epilepsia y en algunos casos su efecto es tan devastador para la salud que hay quienes que con esta luz quedan excluidos completamente de todo ambito de socializacion (estudio, trabajo, deportes).
El parpadeo también causa problemas con las cámaras de vídeo, ya que la frecuencia a la que lee la imagen del sensor puede coincidir con las fluctuaciones (oscilaciones) en intensidad de la lámpara fluorescente.
Las lámparas fluorescentes consumen más electricidad y ven reducida su vida útil si son encendidas y apagadas de manera continuada, visto que su acción de encender les cuesta mucho más trabajo que mantenerse encendidas.
Las lámparas fluorescentes con balasto antiguo no pueden conectarse a un atenuador normal o dimmer (un regulador para controlar el brillo). Hay lámparas especiales (de 4 contactos) y controladores especiales que permiten usar un interruptor con regulador de intensidad.
Desde mediados de la década de los 80, hay una solución para evitar estos inconvenientes, que es el balasto electrónico, que ha cobrado gran importancia a partir de mediados de los 90. En este sistema se hace funcionar al tubo de la misma manera que en la forma tradicional pero esta vez en una frecuencia de más de 20 kHz con lo que se evita completamente el efecto estroboscópico, logra que el parpadeo sea invisible para el ojo humano (y a su vez que las cámaras de vídeo difícilmente logren captarlo), y que desaparezcan ruidos por trabajar por encima del espectro audible. En definitiva se obtiene una mejora del 10% en el rendimiento de la lámpara, un menor consumo, menor calor disipado, silencio absoluto de la reactancia y mayor vida útil a los tubos
Cabe anotar que este tipo de luz, que es difusa, no es aconsejable para la lectura (lo que incluye las tareas o trabajos escolares) u otro tipo de trabajos "finos" debido a que impide una apropiada fijación de la vista sobre el objeto. El efecto difuso de la luz fluorescente hace que los contornos de elementos mínimos o "finos" tiendan a desaparecer impidiendo su enfoque adecuado, lo cual genera fatiga visual que podría ocasionar malestar y un rendimiento deficiente en la labor emprendida.
Para evitar estas circunstancias adversas es aconsejable utilizar, para la lectura y labores similares, bombillas o focos de luz de tungsteno (lámparas incandescentes) que resultan ser los más apropiados para estos efectos.
Las lámparas halógenas también emiten radiación ultravioleta que es filtrada por la ampolla de cuarzo que las conforma. Se recomienda comprar lámparas y tubos de calidad y a ser posible de marcas conocidas o fiables.
Se debe tener en cuenta que este tipo de lámparas (fluorescentes) son consideradas residuos peligrosos debido a su contenido de vapor de mercurio, por lo cual se debe disponer adecuadamente para evitar efectos ambientales negativos.
Encendido
Las lámparas fluorescentes necesitan de unos momentos de calentamiento antes de alcanzar su flujo luminoso normal, por lo que es aconsejable utilizarlas en lugares donde no se están encendiendo y apagando continuamente (como pasillos y escaleras). Por otro lado, como se ha dicho, los encendidos y apagados constantes acortan notablemente su vida útil.
La condición de la vida útil de la lámpara fluorescente puede variar según su uso y las condiciones ambientales en que se encuentra que puede variar a 5000 h.
Con el balasto o reactancia electrónica antes nombrado, sustituyendo a la reactancia tradicional y al cebador, el encendido del tubo es instantáneo alargando de esta manera la vida útil. De todos modos, siempre tarda un tiempo en llegar a su luminosidad normal.

Lámparas Ahorradoras de energía CFL
Las lámparas fluorescentes CFL constan de las siguientes partes:


Tubos Fluorescentes
Se componen de un tubo de unos 6 mm de diámetro aproximadamente, doblados en forma de “U” invertida, cuya longitud depende de la potencia en watt que tenga la lámpara. En todas las lámparas CFL existen siempre dos filamentos de tungsteno o wolframio (W) alojados en los extremos libres del tubo con el propósito de calentar los gases inertes, como el neón (Ne), el kriptón (Kr) o el argón (Ar), que se encuentran alojados en su interior. Junto con los gases inertes, el tubo también contiene vapor de mercurio (Hg). Las paredes del tubo se encuentran recubiertas por dentro con una fina capa de fósforo.


Balasto Electronico
Las lámparas CFL son de encendido rápido, por tanto no requieren cebador (encendedor,starter) para encender el filamento, sino que emplean un balasto electrónico en miniatura, encerrado en la base que separa la rosca del tubo de la lámpara. Ese balasto suministra la tensión o voltaje necesario para encender el tubo de la lámpara y regular, posteriormente, la intensidad de corriente que circula por dentro del propio tubo después de encendido.
El balasto electrónico se compone, fundamentalmente, de un circuito rectificador diodo de onda completa y un oscilador, encargado de elevar la frecuencia de la corriente de trabajo de la lámpara entre 20 000 y 60 000 hertz aproximadamente, en lugar de los 50 ó 60 hertz con los que operan los balastos electromagnéticos e híbridos que emplean los tubos rectos y circulares de las lámparas fluorescentes comunes antiguas.


Base
La base de la lámpara ahorradora CFL se compone de un receptáculo de material plástico, en cuyo interior hueco se aloja el balasto electrónico. Unido a la base se encuentra un casquillo con rosca normal E-27 (conocida también como rosca Edison), la misma que utilizan la mayoría de las bombillas o lámparas incandescentes. Se pueden encontrar también lámparas CFL con rosca E-14 de menor diámetro (conocida como rosca candelabro). No obstante, existen variantes con otros tipos de conectores, de presión o bayoneta, en lugar de casquillos con rosca, que funcionan con un balasto electrónico externo, que no forma parte del cuerpo la lámpara.

Funcionamiento
El funcionamiento de una lámpara fluorescente ahorradora de energía CFL es el mismo que el de un tubo fluorescente común, excepto que es mucho más pequeña y manuable.
Cuando enroscamos la lámpara CFL en un portalámpara  (igual al que utilizan la mayoría de las lámparas incandescentes) y accionamos el interruptor de encendido, la corriente eléctrica alterna fluye hacia el balasto electrónico, donde un rectificador diodo de onda completa se encarga de convertirla en corriente directa y mejorar, a su vez, el factor de potencia de la lámpara. A continuación un circuito oscilador, compuesto fundamentalmente por un circuito transistorizado en función de amplificador de corriente, un enrollado o transformador (reactancia inductiva) y un capacitor o condensador (reactancia capacitiva), se encarga de originar una corriente alterna con una frecuencia, que llega a alcanzar entre 20 mil y 60 mil ciclos o hertz por segundo.
La función de esa frecuencia tan elevada es disminuir el parpadeo que provoca el arco eléctrico que se crea dentro de las lámparas fluorescentes cuando se encuentran encendidas. De esa forma se anula el efecto estroboscópico que normalmente se crea en las antiguas lámparas  fluorescentes de tubo recto que funcionan con balastos electromagnéticos (no electrónicos). En las lámparas fluorescentes antiguas el arco que se origina posee una frecuencia de sólo 50 ó 60 hertz, la misma que le proporciona la red eléctrica doméstica a la que están conectadas.
Para el alumbrado general el efecto estroboscópico es prácticamente imperceptible, pero en una industria donde existe maquinaria funcionando, impulsadas por motores eléctricos, puede resultar peligroso debido a que la frecuencia del parpadeo de la lámpara fluorescente se puede sincronizar con la velocidad de giro de las partes móviles de las máquinas, creando la ilusión óptica de que no están funcionando, cuando en realidad se están moviendo.

En las lámparas CFL no se manifiesta ese fenómeno, pues al ser mucho más alta la frecuencia del parpadeo del arco eléctrico en comparación con la velocidad de giro de los motores, nunca llegan a  sincronizarse ni a crear efecto estroboscópico.

Desde el mismo momento en que los filamentos de una lámpara CFL se encienden, el calor que producen ioniza el gas inerte que contiene el tubo en su interior, creando un puente de plasma entre los dos filamentos. A través de ese puente se origina un flujo de electrones, que proporcionan las condiciones necesarias para que el balasto electrónico genere una chispa y se encienda un arco eléctrico entre los dos filamentos. En este punto del proceso los filamentos se apagan y se convierten en dos electrodos, cuya misión será la de  mantener el arco eléctrico durante todo el tiempo que permanezca encendida la lámpara. El arco eléctrico no es precisamente el que produce directamente la luz en estas lámparas, pero su existencia es fundamental para que se produzca ese fenómeno.

A partir de que los filamentos de la lámpara se apagan, la única misión del arco eléctrico será continuar y mantener el proceso de ionización del gas inerte. De esa forma los iones desprendidos del gas inerte al chocar contra los átomos del vapor de mercurio contenido también dentro de tubo, provocan que los electrones del mercurio se exciten y comiencen a emitir fotones de luz ultravioleta. Dichos fotones, cuya luz no es visible para el ojo humano, al salir despedidos chocan contra las paredes de cristal del tubo recubierto con la capa fluorescente. Este choque de fotones ultravioletas contra la capa fluorescente provoca que los átomos de flúor se exciten también y emitan fotones de luz blanca, que sí son visibles para el ojo humano, haciendo que la lámpara se encienda.
 
Instalacion de tubos Fluorescentes


Causas frecuentes en las averías de los tubos fluorescentes.

·         Efecto estroboscópico: la luz se “enciende y apaga” 50 veces por segundo (frecuencia), y durante ese momento no hay luz, pero es inapreciable para el ojo humano. Pero a veces ocurre que la frecuencia varía en el tubo por estar estropeado, y los objetos en movimiento parecen que no se mueven o lo hacen intermitentemente.
·         Ennegrecimiento paulatino en ambos extremos: es debido al envejecimiento del tubo, lo provocan las partículas del cátodo.
·         Anillos en uno o ambos extremos (rojo castaño): es debido al desgaste y arranque inadecuado.
·         Rayas oscuras longitudinales: es debido a glóbulos de mercurio condensados. (Solución: girar el tubo media vuelta).
·         Manchas densas en los extremos: el material de los cátodos se desprenden rápidamente. Pueden ser debidos a: 1º) cebador defectuoso o inapropiado (parpadea), 2º) filamentos encendidos (contactos del cebador soldados).
·         Nota. A veces la intermitencia de encendido se debe al mal contacto del tubo con su porta-tubo (revisar conexiones y contactos).

lunes, 27 de octubre de 2014

Generación y Distribucion de la Electricidad

GENERACION DE  LA ELECTRICIDAD.

¿De dónde viene la electricidad?

Enunciado: La energía ni se crea ni se destruye, sólo se transforma. (Einstein)

La electricidad es una energía, y lo único que hacemos es transformar una energía mecánica (pedalear en una bici / caída de agua de unas cataratas) mediante un dispositivo (dinamo / turbina-generador) en energía eléctrica, o transformar energía química (compuestos químicos de una pila que reaccionan transfiriendo electrones de un polo a otro) a energía eléctrica. También hay otros sistemas de generación de energía eléctrica como son: energía solar mediante paneles fotovoltaicos, energía eólica mediante aerogeneradores, etc.

¿Qué es lo que se pretende al generar la electricidad?
Lo que se pretende es “expulsar” a los electrones de las órbitas que están alrededor del núcleo de un átomo.

Para expulsar esos electrones se requiere cierta energía, y se pueden emplear 6 clases de energía:

a) Frotamiento: Electricidad obtenida frotando dos materiales.

b) Presión: Electricidad obtenida producida aplicando presión a un cristal (Ej.: cuarzo).

c) Calor: Electricidad producida por calentamiento en materiales.

d) Luz: Electricidad producida por la luz que incide en materiales fotosensibles.

e) Magnetismo: Electricidad producida por el movimiento de un imán y un conductor.

f) Química: Electricidad producida por reacción química de ciertos materiales.

En la práctica solamente se utilizan dos de ellas: la química (pila) y el magnetismo (alternador). Las otras formas de producir electricidad se utilizan pero en casos específicos.


Métodos habituales de generar electricidad.
Hay tres métodos habituales para generar electricidad: 

A) Dinamo y alternador

B) Pilas y baterías

C) Central eléctricas (turbina-generador)


A) Dinamo (bicicleta) o alternador (automóvil)

Estas máquinas están compuestas por una parte móvil que gira, llamada rotor y una fija o estática llamada estator. El rotor se compone de unas bobinas de hilo de cobre que giran con el eje. El estator es un imán o electroimán que está fijo y que rodea al rotor.

Al girar el eje de la máquina, el imán crea sobre estas bobinas un campo magnético variable induciendo una tensión en los terminales de las bobinas. Esta tensión se saca fuera de la máquina por medio de unas escobillas o anillos rozantes.

También puede encontrarse una construcción inversa, es decir, el imán en el eje o rotor y la bobina en el estator. Esta tensión generada en la máquina puede ser continua o alterna, según la construcción o el montaje de los anillos rozantes.


¿Qué es y cómo funciona una dinamo?

Es un Generador eléctrico formado por una bobina de cable de cobre barnizado (¿por qué barnizado?) arrollada en un núcleo de hierro dulce (no de acero) que gira dentro de uncampo magnético producido por un imán situado alrededor de ella y que cuando gira transforma la energía cinética que recibe en energía eléctrica continua.

Por ejemplo: un dinamo es lo que vosotros lleváis en las bicicletas y que cuando lo ponéis en contacto con la rueda cuando se está moviendo y tiene energía cinética, ésta hace girar el eje en torno al cual está arrollado el bobinado de cobre formando un electroimán que gira dentro del campo magnético del imán de la dinamo, transformando así la energía cinéticade la rueda de la bicicleta en la energía eléctrica necesaria para que las lámparas de vuestro "bólido" se enciendan.

¿Qué es un alternador?

Es un generador eléctrico parecido a la dinamo pero con mejores ventajas, debido a que es más robusta y duradera. Produce corriente eléctrica alterna al cambiar la polaridad cada media vuelta, por lo que hay que rectificarla para convertirla en CC, si se quiere emplear para ciertas aplicaciones que lo requieran. (Por ejemplo el alternador del coche aprovecha el movimiento rotatorio del motor para recargar la batería, pero tiene que rectificarla antes de que vaya a la batería, al ser ésta de CC). En las centrales hidroeléctricas se emplean también gigantescos alternadores que generan corriente alterna trifásica.


B) Pilas o baterías

¿Cómo funcionan las pilas?

Una pila eléctrica es un dispositivo que convierte energía química en energía eléctrica por un proceso químico transitorio, tras lo cual cesa su actividad y han de renovarse sus elementos constituyentes, puesto que sus características resultan alteradas durante el mismo. Se trata de un generador primario. Esta energía resulta accesible mediante dos terminales que tiene la pila, llamados polos, electrodos o bornes. Uno de ellos es el polo positivo o cátodo y el otro es el polo negativo o ánodo.

La estructura fundamental de una pila consiste en dos electrodos, metálicos en muchos casos, introducidos en una disolución conductora de la electricidad o electrolito

Las pilas básicamente consisten en dos electrodos metálicos sumergidos en un líquido, sólido o pasta que se llama electrolito. El electrolito es un conductor de iones.

Cuando los electrodos reaccionan con el electrolito, en uno de los electrodos (el ánodo) se producen electrones (oxidación), y en el otro (cátodo) se produce un defecto de electrones (reducción). Cuando los electrones sobrantes del ánodo pasan al cátodo a través de un conductor externo a la pila se produce una corriente eléctrica.
Como puede verse, en el fondo, se trata de una reacción de oxidación y otra de reducción que se producen simultáneamente.
¿Qué es una batería?
Es un Generador eléctrico que funciona como la pila y que está formado por varias pilas unidas en seriepolo positivo con polo negativo, consiguiendo así un voltaje mayor en elcircuito.
Las baterías modernas utilizan una variedad de químicos para realizar sus reacciones. La química de las baterías comunes incluye:
· Baterías de Cinc, también conocidas como baterías estándar de carbón. La química de cinc-carbón es utilizada en cualquier batería AA, o afín. Los electrodos son de cinc y carbón, con una unión ácida entre ellas como electrolito.
· Baterías alcalinas. Los electrodos son de cinc y óxido de manganeso con un electrolito alcalino.
· Batería de níquel-cadmio
. Utiliza el hidróxido de níquel y electrodos de cadmio con hidróxido de potasio como electrolito. Es recargable.
· Hidruro de níquel metal
. Recargable. Reemplazó rápido al níquel cadmio porque no sufre de los problemas del efecto memoria que tiene la anterior. ¿Sabes qué es el efecto memoria?
· Ion litio
. Recargable. Muy buen rendimiento, se utiliza en los últimos PC's portátiles y teléfonos móviles.
· Plata cinc
. Utilizada en aplicaciones aeronáuticas porque el rendimiento es bueno.


C) Centrales eléctricas, turbinas y generadores.
La electricidad que consumimos, es transportada por una red de cables, que se produce básicamente al transformar la energía cinética en energía eléctrica. Para ello, utilizan turbinas y generadores. Las turbinas son enormes ruedas con alabes y engranajes que rotan sobre sí mismos una y otra vez, impulsados por una energía externa. Los generadores son aparatos que transforman la energía cinética de
Movimiento de una turbina, en energía eléctrica (parecido a un alternador muy grande).
Existen dos tipos principales de centrales generadoras de electricidad: hidroeléctricas y termoeléctricas (térmicas a vapor, térmicas a gas y de ciclo combinado).
Centrales hidroeléctricas: utilizan la fuerza y velocidad del agua para hacer girar las turbinas. Las hay de dos tipos: de pasada (que aprovechan la energía cinética natural del agua de los ríos) y de embalse (el agua se acumula mediante presas, y luego se libera con mayor presión hacia la central eléctrica).

 
Centrales termoeléctricas: usan el calor para producir electricidad. Calientan una sustancia, que puede ser agua o gas, los cuales al calentarse salen a presión y mueven turbinas y entonces el movimiento se transforma. Como ya hemos visto, para alimentar una central termoeléctrica se pueden usar muchas fuentes energéticas: carbón, petróleo, gas natural, energía solar, geotérmica o nuclear, biomasa... Estas son las utilizadas principalmente:

1. Centrales térmicas a vapor. En este caso, se utiliza agua en un ciclo cerrado (siempre es la misma agua). El agua se calienta en grandes calderas, usando como combustible el carbón, gas, biomasa, etc. La turbina se mueve debido a la presión del vapor de agua, y su energía cinética es transformada en electricidad por un generador.

2. Centrales térmicas a gas. En vez de agua, estas centrales utilizan gas, el cual se calienta utilizando diversos combustibles (gas, petróleo o diesel). El resultado de esta combustión es que gases a altas temperaturas movilizan a la turbina, y su energía cinética es transformada en electricidad. (Hay una en Huelva, y utiliza gas natural)

3. Centrales de ciclo combinado. Utilizan dos turbinas, una a gas y otra a vapor. El gas calentado moviliza a una turbina y luego calienta agua, la que se transforma en vapor y moviliza, a su vez, a una segunda turbina.

Nota. Hay muchos tipos de centrales eléctricas que no se han nombrado y que se emplean en la actualidad. Ej.:

-       Central eólica con aerogeneradores (los alabes de los aerogeneradores actúan de turbina).

-       Central solar con paneles solares y fotovoltaicos (los paneles solares sólo calientan agua u otro líquido, y los fotovoltaicos recogen la radiación del sol en forma de fotones creando una diferencia de potencial en placas de Silicio u otras, acumulando la electricidad generada en baterías.)

-       Central nuclear (que a partir de la fisión (“rotura”) de un átomo de isótopo de Uranio u otro, crea energía en forma de calor y “radiaciones”, que calientan agua hasta la evaporación para así mover los alabes de las turbinas y ese movimiento lo aprovecha el generador para generar la electricidad).

-       Otras: Mareomotriz, Biomasa, Geotérmica.
 

COMO LLEGA LA ELECTRICIDAD A NUESTROS HOGARES.


             
       (Imagen animada)


Arriba



Arriba

Arriba

Arriba




Arriba

 Conmutación