En nuestro hogar tenemos usualmente un bombillo que
ilumina la entrada, el patio de ropas o el ante jardín. Como es una luz
que está en el exterior de la casa, ¿a quien no se le ha olvidado
apagarla?
La dejamos prendida por horas y horas en el día y a veces por semanas, haciendo un consumo de energía innecesario.
Pensando en una solución a este problema, hemos diseñado un dispositivo electrónico que se encarga de encender un bombillo, en el momento que el sol se oculta y se apaga automáticamente cuando el sol vuelve a asomar a la madrugada, igual que las lámparas de iluminación del alumbrado público.
Otra de nuestras motivaciones para hacer este circuito es dar a conocer algunos componentes como los optoacopladores y los Triacs, enseñando su funcionamiento básico.
La dejamos prendida por horas y horas en el día y a veces por semanas, haciendo un consumo de energía innecesario.
Pensando en una solución a este problema, hemos diseñado un dispositivo electrónico que se encarga de encender un bombillo, en el momento que el sol se oculta y se apaga automáticamente cuando el sol vuelve a asomar a la madrugada, igual que las lámparas de iluminación del alumbrado público.
Otra de nuestras motivaciones para hacer este circuito es dar a conocer algunos componentes como los optoacopladores y los Triacs, enseñando su funcionamiento básico.
Diagrama esquemático
Este circuito funciona con voltajes desde 120 hasta
220 voltios, sin necesidad de hacerle ningún cambio. Por eso el
condensador (C1) de la entrada de corriente (225) es a 250 voltios como mínimo y el condensador de rectificación (C2)
(22 uF) es a 350V, ya que si alimentamos este circuito con 220 voltios
AC, al momento de ser rectificados se convierten aproximadamente en 330
voltios DC.
El bombillo puede ser hasta de 100W. Puede usar uno de más potencia, siempre y cuando cambie el Triac BT136, por uno que soporte más amperios como el BTA08600, que soporta hasta 8 amperios. No olvide usar un disipador para mantener el Triac refrigerado.
El bombillo puede ser hasta de 100W. Puede usar uno de más potencia, siempre y cuando cambie el Triac BT136, por uno que soporte más amperios como el BTA08600, que soporta hasta 8 amperios. No olvide usar un disipador para mantener el Triac refrigerado.
A continuación haremos una breve explicación de la función que desempeña cada componente del circuito.
Una de las grandes virtudes de este circuito es que NO NECESITA TRANSFORMADOR.
En este caso usamos un circuito muy sencillo que baja el voltaje y lo rectifica, ahorrando dinero y espacio.
El condensador (C1) de 2.2 uF de poliéster, está en serie a la entrada del voltaje de la red pública, restringiendo el paso de corriente (amperios). Este condensador sólo permite el paso de unos 60 mA aproximadamente, facilitando la reducción de voltaje que se hará mas adelante. La resistencia de 330K (R1) que está en paralelo con el condensador (C1), se encarga de descargar el condensador a la hora de desconectar el circuito, evitando que el condensador quede cargado y pueda enviarnos una descarga eléctrica, al momento de manipular el circuito.
En el otro cable de entrada de la red pública hay una resistencia de 10 ohmios (R2) que funciona como fusible y también ayuda a limitar la corriente.
El condensador (C1) de 2.2 uF de poliéster, está en serie a la entrada del voltaje de la red pública, restringiendo el paso de corriente (amperios). Este condensador sólo permite el paso de unos 60 mA aproximadamente, facilitando la reducción de voltaje que se hará mas adelante. La resistencia de 330K (R1) que está en paralelo con el condensador (C1), se encarga de descargar el condensador a la hora de desconectar el circuito, evitando que el condensador quede cargado y pueda enviarnos una descarga eléctrica, al momento de manipular el circuito.
En el otro cable de entrada de la red pública hay una resistencia de 10 ohmios (R2) que funciona como fusible y también ayuda a limitar la corriente.
Luego de que la corriente pasa por el condensador y
la resistencia, llega a un puente de diodos formado por 4 diodos
rectificadores, que se encargan de separar los semiciclos positivos de
los negativos, entregándolos por separado, para luego ser rectificados
por un condensador (C2), convirtiendo la corriente alterna (AC) en corriente directa (DC).
Recordemos que al rectificar una corriente se eleva su voltaje, multiplicándolo por raíz de 2 que es 1.4141. Esto quiere decir que para una alimentación de 120 voltios AC, obtendremos a la salida del puente de diodos un voltaje de 169 voltios, menos 2 voltios de consumo del puente y algunas perdidas, tendremos unos 157 voltios aproximadamente. Y para una alimentación de 220 voltios AC, tendremos un voltaje de salida de unos 305 voltios DC aprox. Por esta razón el condensador de la fuente rectificadora debe ser de 350 voltios, de lo contrario se estallará al momento de conectar el circuito.
Recordemos que al rectificar una corriente se eleva su voltaje, multiplicándolo por raíz de 2 que es 1.4141. Esto quiere decir que para una alimentación de 120 voltios AC, obtendremos a la salida del puente de diodos un voltaje de 169 voltios, menos 2 voltios de consumo del puente y algunas perdidas, tendremos unos 157 voltios aproximadamente. Y para una alimentación de 220 voltios AC, tendremos un voltaje de salida de unos 305 voltios DC aprox. Por esta razón el condensador de la fuente rectificadora debe ser de 350 voltios, de lo contrario se estallará al momento de conectar el circuito.
Ahora
que tenemos el voltaje rectificado y con una corriente pequeña, debemos
bajar el voltaje a unos 10 voltios DC. Para esto utilizamos un diodo zener. Es importante resaltar que un diodo zener NO
se debe conectar sin su respectiva resistencia de polarización, que
limita la corriente que alimentará el zener, de lo contrario el zener se
quemará.
La resistencia de 39K a 5 watts (R3) que vemos en la fotografía es la resistencia de polarización del zener. Es necesario que sea a 5W, ya que el esfuerzo que tiene que hacer para bajar la corriente, genera un calor relativamente alto. La fórmula para calcular esta resistencia es la siguiente:
RZ = Vt – Vz / Iz
Resistencia de polarización = voltaje total menos el voltaje del zener, dividido por los amperios del zener.
Tenemos que: 305VDC – 10 = 295VDC / 0.02 Amp = 14.750 ohmios. Podría ser una resistencia de 15K, pero al hacer la prueba se calentaba demasiado, por lo que optamos por buscar la resistencia más alta, antes de que se caiga el voltaje por falta de corriente. La resistencia máxima es de 47K y la mínima sin exceso de calor es de 33K.
La resistencia de 39K a 5 watts (R3) que vemos en la fotografía es la resistencia de polarización del zener. Es necesario que sea a 5W, ya que el esfuerzo que tiene que hacer para bajar la corriente, genera un calor relativamente alto. La fórmula para calcular esta resistencia es la siguiente:
RZ = Vt – Vz / Iz
Resistencia de polarización = voltaje total menos el voltaje del zener, dividido por los amperios del zener.
Tenemos que: 305VDC – 10 = 295VDC / 0.02 Amp = 14.750 ohmios. Podría ser una resistencia de 15K, pero al hacer la prueba se calentaba demasiado, por lo que optamos por buscar la resistencia más alta, antes de que se caiga el voltaje por falta de corriente. La resistencia máxima es de 47K y la mínima sin exceso de calor es de 33K.
En la fotografía podemos apreciar los otros componentes que acompañan el diodo zener.
La resistencia de 10K (R4), le ayuda al zener a soportar la carga. Va en paralelo a tierra con el diodo zener.
El condensador de 47 uF (C3) y el condensador cerámico de 0.1 uF (C4) rectifican nuevamente la corriente, quitando posibles rizos.
Cuando hicimos la prueba en el protoboard sin estos dos condensadores, notamos que titilaba levemente el bombillo, sobre todo al usar una lámpara de neón. Por esta razón los colocamos, logrando una iluminación estable y sin fluctuaciones.
La resistencia de 10K (R4), le ayuda al zener a soportar la carga. Va en paralelo a tierra con el diodo zener.
El condensador de 47 uF (C3) y el condensador cerámico de 0.1 uF (C4) rectifican nuevamente la corriente, quitando posibles rizos.
Cuando hicimos la prueba en el protoboard sin estos dos condensadores, notamos que titilaba levemente el bombillo, sobre todo al usar una lámpara de neón. Por esta razón los colocamos, logrando una iluminación estable y sin fluctuaciones.
Hemos terminado de explicar la fuente de alimentación.
Ahora viene el circuito que se encarga de la automatización de encendido al detectar oscuridad y apagado al detectar luz.
El reóstato que vemos en la fotografía (RV1) forma parte de un divisor de voltaje, junto con una fotorresistencia. Se puede colocar una resistencia fija de 10 o 15K, pero el reóstato da la posibilidad de graduar la sensibilidad del circuito.
Entrando en materia: Cuando la corriente pasa por el reóstato y llega al punto centro entre el reóstato y la fotorresistencia. Si la fotorresistencia está recibiendo luz, baja su impedancia a 0 ohmios, polarizando negativamente la base del transistor. Al momento que se oscurece el ambiente, la fotorresistencia sube su impedancia a más de 100K, restringiendo el paso de la corriente. En ese momento se polariza positivamente la base del transistor 2N3904.
Ahora viene el circuito que se encarga de la automatización de encendido al detectar oscuridad y apagado al detectar luz.
El reóstato que vemos en la fotografía (RV1) forma parte de un divisor de voltaje, junto con una fotorresistencia. Se puede colocar una resistencia fija de 10 o 15K, pero el reóstato da la posibilidad de graduar la sensibilidad del circuito.
Entrando en materia: Cuando la corriente pasa por el reóstato y llega al punto centro entre el reóstato y la fotorresistencia. Si la fotorresistencia está recibiendo luz, baja su impedancia a 0 ohmios, polarizando negativamente la base del transistor. Al momento que se oscurece el ambiente, la fotorresistencia sube su impedancia a más de 100K, restringiendo el paso de la corriente. En ese momento se polariza positivamente la base del transistor 2N3904.
La fotorresistencia o RDL (resistencia
dependiente de la luz), es una resistencia variable que cambia su
impedancia de acuerdo a la cantidad de luz que absorba en su superficie.
Como se puede observar en la fotografía, le hemos colocado un recubrimiento en su parte inferior. Esto con el fin de que no reciba luz por debajo, ya que si esto sucede, no funcionará correctamente. Como no queríamos que quedara la resistencia pegada a la tarjeta del circuito impreso, usamos un trozo de un bolígrafo viejo y lo cubrimos con cinta aislante negra. De la buena ubicación de la fotorresistencia, depende la precisión en el funcionamiento de nuestro circuito.
Como se puede observar en la fotografía, le hemos colocado un recubrimiento en su parte inferior. Esto con el fin de que no reciba luz por debajo, ya que si esto sucede, no funcionará correctamente. Como no queríamos que quedara la resistencia pegada a la tarjeta del circuito impreso, usamos un trozo de un bolígrafo viejo y lo cubrimos con cinta aislante negra. De la buena ubicación de la fotorresistencia, depende la precisión en el funcionamiento de nuestro circuito.
Volvamos
al funcionamiento de nuestro circuito de luz automática. Al momento que
la fotorresistencia tiene su impedancia muy alta, se polariza
positivamente la base del transistor 2N3904 (NPN). En ese momento el transistor conduce entre colector y emisor, polarizando negativamente la base del transistor 2N2907
que es de polaridad PNP. Esto quiere decir que conduce cuando su base
es estimulada con un voltaje negativo. Al conducir el transistor 2N2907, pasa un voltaje positivo de colector a emisor y llega hasta el optoacoplador.
Nota: El transistor 2N2907
fue colocado en las dos direcciones, invirtiendo colector y emisor. Y
en las dos posiciones, el circuito funcionó correctamente. Por eso en
las fotografías del artículo se ve al contrario de la máscara de
componente. Puede colocarlo para cualquiera de los dos lados y probar su
sensibilidad. La idea de estos proyectos es adquirir conocimiento y
práctica.
El optoacoplador es un relevo de estado sólido, también conocido con el nombre de optoaislador o aislador acoplado ópticamente. Para el caso del MOC3021, sus patas 1 y 2 van internamente a un diodo LED que al iluminar, excita un fototriac
que permite conducir corriente entre las patas 4 y 6 del optoacoplador.
Se utiliza para aislar eléctricamente el circuito anterior que es
alimentado a 10 voltios y unos pocos miliamperios, de la parte donde
manejaremos el voltaje de la red pública.
Esta es una de las grandes ventajas de usar un optoacoplador, ya que sirve para aislar un circuito de otro, evitando catástrofes a la hora de un corto circuito.
Al momento que el transistor 2N2907 conduce, le envía un voltaje al LED que se encuentra dentro del MOC3021. Como el voltaje que llega al optoacoplador es de 10 voltios y un LED sólo puede ser alimentado con 3 voltios, colocamos una resistencia de 390 ohmios en serie con el pin 2 que es el pin de tierra o negativo.
Esta es una de las grandes ventajas de usar un optoacoplador, ya que sirve para aislar un circuito de otro, evitando catástrofes a la hora de un corto circuito.
Al momento que el transistor 2N2907 conduce, le envía un voltaje al LED que se encuentra dentro del MOC3021. Como el voltaje que llega al optoacoplador es de 10 voltios y un LED sólo puede ser alimentado con 3 voltios, colocamos una resistencia de 390 ohmios en serie con el pin 2 que es el pin de tierra o negativo.
El TRIAC es un dispositivo semiconductor de la familia de los transistores,
pero con la particularidad que puede conducir en dos direcciones. Es
decir que puede conducir corriente alterna, algo que no pueden hacer los
transistores. También son llamados relevos de estado sólido.
Tiene tres patas: T1, T2 y G (compuerta en ingles es Gate).
Al momento que el optoacoplador es accionado por el transistor, este conduce entre sus pines 4 y 6, enviando una corriente a la compuerta del Triac. El Triac conduce la corriente de la red pública y como el bombillo está en serie, este se enciende. Al momento que no llega corriente a la compuerta del Triac, este deja de conducir y el bombillo se apaga.
Tiene tres patas: T1, T2 y G (compuerta en ingles es Gate).
Al momento que el optoacoplador es accionado por el transistor, este conduce entre sus pines 4 y 6, enviando una corriente a la compuerta del Triac. El Triac conduce la corriente de la red pública y como el bombillo está en serie, este se enciende. Al momento que no llega corriente a la compuerta del Triac, este deja de conducir y el bombillo se apaga.
Nota: El triac solamente abre y
cierra el aso de corriente, Por lo tanto de puede encender cualquier
tipo de bombillo que sea alimentado con la red publica. Nosotros
probamos el circuito con lámparas ahorradoras, obteniendo el mismo
resultado que con los bombillos incandescentes. También lo probamos con
una lámpara de LEDs y una grabadora casera.
Cuando la resistencia vuelve a recibir luz, esta baja su impedancia, y se polariza negativamente la base del transistor 2N3904. Como este transistor es NPN, no conduce y por lo tanto tampoco el otro transistor, ni el Optoacoplador y por lógica tampoco el Triac.
Si queremos direccionar la fotorresistencia a un punto de luz especifico, podemos entubarla, tal como se aprecia en la foto. Esto se usa para alarmas o por ejemplo para subir la puerta del garaje al encender las luces. En fin; Dejamos a la imaginación de cada uno una infinidad de posibilidades a partir de un circuito tan sencillo, pero útil como este.
Si queremos direccionar la fotorresistencia a un punto de luz especifico, podemos entubarla, tal como se aprecia en la foto. Esto se usa para alarmas o por ejemplo para subir la puerta del garaje al encender las luces. En fin; Dejamos a la imaginación de cada uno una infinidad de posibilidades a partir de un circuito tan sencillo, pero útil como este.
Bombillo incandescente Lámpara ahorradora Lampara de LEDs
Nota: lea a conciencia hasta
entender el funcionamiento del circuito. No lo arme sólo por armarlo.
Cuando se tiene claro el funcionamiento de un aparato, no habrá
obstáculos al momento de construirlo.
Antes de empezar, lea nuestra sección de Recomendaciones. Contiene muchos “tips” que le serán muy útiles en la construcción de cualquiera de nuestros proyectos.
Hemos proporcionado el diagrama de conexión en protoboard para los estudiantes de electrónica que desean practicar y hacer sus propias variaciones.
Antes de empezar, lea nuestra sección de Recomendaciones. Contiene muchos “tips” que le serán muy útiles en la construcción de cualquiera de nuestros proyectos.
Hemos proporcionado el diagrama de conexión en protoboard para los estudiantes de electrónica que desean practicar y hacer sus propias variaciones.
Creo que su circuito tiene un error, el transistor PNP que controla el OPTOACOPLADOR está mal polarizado, o por lo menos asi muestra en su diagrama
ResponderEliminar